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Abstract. Given a sequence ofN positive real numbers{a1, a2, . . . , aN }, the number
partitioning problem consists of partitioning them into two sets such that the absolute value
of the difference of the sums ofaj over the two sets is minimized. In the case in which the
aj ’s are statistically independent random variables uniformly distributed in the unit interval, this
NP-complete problem is equivalent to the problem of finding the ground state of an infinite-
range, random antiferromagnetic Ising model. We employ the annealed approximation to derive
analytical lower bounds to the average value of the difference for the best constrained and
unconstrained partitions in the largeN limit. Furthermore, we calculate analytically the fraction
of metastable states, i.e. states that are stable against all single spin flips, and found that it
vanishes likeN−3/2.

1. Introduction

The importance of the study of complex optimization problems which involve quenched,
random, frustrated functions of many variables, as well as the major role that statistical
mechanics can play in the study, were pointed out by many authors more than 10 years ago
[1, 2]. In fact, the well-established statistical mechanics techniques to characterize ground
states (global minima) and metastable states (local minima) of spin glass models can be
readily adapted to the study of optimization problems [2]. As a result, these techniques
have been successfully applied to the probabilistic analysis of several classical combinatorial
optimization problems, such as the graph partitioning problem [3], the travelling salesman
problem [4, 5], the knapsack problem [6–8], and the satisfiability problem [9–11], to mention
only a few.

In this paper we study the number partition problem (NPP) which is stated as follows.
Given a sequence of positive real numbers{a1, a2, . . . , aN }, the NPP consists of partitioning
them into two disjoint setsA1 andA2 such that the difference∣∣∣∣ ∑

aj∈A1

aj −
∑
aj∈A2

aj

∣∣∣∣ (1)

is minimized. Alternatively, we can search for the Ising spin configurationss = (s1, . . . , sN)
that minimize the energy or cost function

E(s) =
∣∣∣∣ N∑
j=1

aj sj

∣∣∣∣ (2)
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wheresj = 1 if aj ∈ A1 and sj = −1 if aj ∈ A2. We can also consider the problem of
constrained partitions, in which the difference between the cardinalities of setsA1 andA2

is fixed, i.e.

m = 1

N

N∑
j=1

sj . (3)

The NPP may be viewed as the practical problem of finding the fairest way to partition a
set ofN objectsj = 1, 2, . . . , N , each of which of valueaj , between two people. Despite
its simplicity, the NPP was shown to belong to the NP-complete class, which basically
means that there is no known deterministic algorithm guaranteed to solve all instances of
this problem within a polynomial time bound [12]. The fact that the NPP is frustrated
can easily be understood by squaring equation (2), so that the problem of minimizingE

becomes the one of finding the ground state of the infinite-range, random antiferromagnetic
Ising Hamiltonian [13]

H = 1
2

∑
i

∑
j>i

aiaj sisj . (4)

Thus, we note that the problem of finding the ground state of (4) is NP-complete.
Although zero-cost solutions of the NPP may be of some value to cryptography [14],

the interest in this problem stems mainly from the remarkable failure of the stochastic
heuristic simulated annealing [15, 16] to find good solutions to it, as compared with the
solutions found by deterministic heuristics [17]. In fact, the reason for that failure is that
the usual strategy of exploring the space of configurations{s} through single spin flips leads
to changes of energy that are typically of order 1/N , while a theoretical analysis indicates
that the global minimum energy is of order

√
N2−N for unconstrained partitions [18]. It

is interesting to note that a very simple deterministic heuristic, the differencing method of
Karmakar and Karp [19], can find with high probability solutions whose energies are of
order 1/Nα logN for someα > 0. More recently, it has been shown that the performance
of simulated annealing can be greatly improved and even surpass that of the differencing
method by employing different representations for the problem [20].

In this work we employ the annealed approximation [21, 22] to derive rigorous lower
bounds to the average value of the difference or energy for the best constrained and
unconstrained partitions. For constrained partitions, we show that the average optimal
energy is extensive form >

√
2− 1 and we calculate it exactly in this regime using the

self-averaging property of the free energy density. The theoretical predictions are compared
with numerical estimates for the optimal energy obtained through the exhaustive search of
the configuration space forN 6 24. Furthermore, we calculate analytically the average
number of minima in the 1-swap neighbourhood and estimate their typical energy. A
minimum in the 1-swap neighbourhood is a state that has lower energy than all theN states
that differ from it by a single spin only [17]. Similarly to previous studies of the NPP
[17, 18, 20], we will consider the case where theaj ’s are statistically independent random
variables uniformly distributed in the unit interval.

The remainder of this paper is organized as follows. In section 2 we describe the
annealed approximation and calculate the lower bounds to the average value of the optimal
energy. In section 3 we present the calculation of the average number of local minima
in the 1-swap neighbourhood. In section 4 we discuss our main results and present some
concluding remarks. In particular, we compare our approach with other theoretical studies
of the NPP [13, 18]. In the appendix we present the details of the self-averaging calculation
of the average optimal energy in the regime where this quantity is extensive.
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2. Annealed approximation

In the canonical ensemble formalism of the statistical mechanics the average value of the
optimal energy for constrained partitions is given by

Ēm = lim
T→0

Fm(T ) = − lim
T→0

T 〈lnZm〉 (5)

whereFm(T ) is the average free energy, andZm(T ) is the partition function

Zm(T ) =
∑
{s}
δ

(
Nm,

∑
j

sj

)
exp

[
−E(s)

T

]
(6)

with m = −1,−1+ 2/N, . . . ,1− 2/N, 1. Here the summation is over the 2N statess,
δ(k, l) is the Kronecker delta andT is the temperature. The notation〈. . .〉 stands for the
average over the random variablesai . The limit T → 0 in equation (5) ensures that only
the states that minimizeE (s) will contribute toZm.

Since the average entropySm(T ) = −dFm/dT of a system of Ising spins is positive at
all temperatures,Fm must be a decreasing function ofT , so thatĒm = F(0) > F(T ) for
all T . Defining the annealed free energy by

Fam(T ) = −T ln〈Zm(T )〉 (7)

and using Jensen’s inequality [23], ln〈Zm〉 > 〈lnZm〉, yield the following inequalities

Fam(T ) 6 Fm(T ) 6 Ēm. (8)

Thus, the annealed free energy calculated at anyT provides a rigorous lower bound tōEm
[21, 22]. Clearly, the tightest bound is given byĒam = Fam(T ∗m) whereT ∗m is the temperature
that maximizesFam(T ), i.e.

dFam
dT

∣∣∣∣
T ∗m

= 0. (9)

This procedure is very useful because, in general, the annealed free energy is much easier
to evaluate than the quenched one.

We now proceed with the explicit evaluation of the annealed free energy. Using the
integral representations of the Dirac and Kronecker delta functions we write

〈Zm(T )〉 =
∫ ∞
−∞

∫ ∞
−∞

dx dx̃

2π
eixx̃−|x|/T

∫ π

−π

dm̃

2π
eiNmm̃

∏
j

∫ 1

0
daj

∑
sj=±1

exp[−isj (aj x̃ + m̃)].

(10)

The integrals overx and aj , as well as the summation oversj , can easily be performed
yielding

〈Zm(T )〉 =
∫ ∞
−∞

dx̃

2π

2T

1+ (T x̃)2
[

sin(x̃/2)

x̃/2

]N ∫ π

−π

dm̃

2π
eiNmm̃[eim̃+ix̃/2+ e−im̃−ix̃/2]N. (11)

Using the binomial theorem, the integral overm̃ can be readily carried out. The final result
is simply

〈Zm(T )〉 =
(
N

n

)∫ ∞
−∞

dy

π

2T

1+ (2Ty)2 eNGm(y) (12)
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where

n = N 1−m
2

(13)

Gm(y) = imy + ln

(
siny

y

)
(14)

and we have made the change of variabley = x̃/2. In the limit of largeN , the integral over
y can be evaluated using the saddle-point method [24]. Since|m| 6 1, the saddle-point is
the imaginaryys = iζ , whereζ is the real solution of the equation

m− cothζ + 1

ζ
= 0. (15)

Hence, the functionGm(ys) = Gm, where

Gm = −mζ + ln
sinhζ

ζ
(16)

is real. Finally, using Stirling’s formula for the binomial coefficient we rewrite equation (12)
in the limit of largeN as

〈Zm(T )〉 = 2

πN

√
1

(1−m2)|G′′m|
2T

1− (2T ζ )2 eNgm (17)

where

gm = Gm − 1+m
2

ln
1+m

2
− 1−m

2
ln

1−m
2

(18)

and

G′′m = −1+m2+ 2m

ζ
. (19)

At this stage we can readily calculate the temperatureT ∗m that maximizes the annealed free
energy. In fact, equation (9) is written as

ln〈Zm(T ∗m)〉 +
1+ (2T ∗mζ )2
1− (2T ∗mζ )2

= 0. (20)

We consider first the regime where〈Zm(T ∗m)〉 is of order 1. In this case, equation (17)
implies thatT ∗m is vanishingly small, so that equation (20) reduces to〈Zm(T ∗m)〉 = e−1.
Inserting this result into equation (7) yields̄Eam = T ∗m. Hence,

Ēam =
πN

4

√
(1−m2)|G′′m|e−1−Ngm (21)

which is consistent with the assumption thatT ∗m is small for largeN , provided thatgm > 0.
Sincegm decreases monotonically withm, from g0 = ln 2 to g1 = −∞, this assumption
breaks down for|m| > 0.560 wheregm is negative. Henceforth we will assume thatm > 0.

It is instructive to consider in detail the case of even partitions (m = 0). In this case
we find ζ = 0, g0 = ln 2, andG′′0 = − 1

3 so that

〈Z0(T )〉 = 2NT
4
√

3

πN
(22)

and

Ēa0 = 2−N
πN

4e
√

3
≈ 0.1672−NN. (23)
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Figure 1. (a) Average optimal energy obtained through exhaustive search as a function ofN

for even partitions (m = 0). (b) Ratio between the standard deviation and the average value of
the optimal energy obtained through exhaustive search as a function ofN for even partitions
(m = 0).
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In figures 1(a) and (b) we present the results of numerical experiments to estimate the energy
of the global minima for even partitions through the exhaustive search in the configuration
space forN 6 24. In all experiments discussed in this work, the symbols represent the
averages over 104 realizations of the set{aj }. The error bars are calculated by measuring
the standard deviation of the average optimal energies obtained in 25 experiments, each
one involving the average of 400 realizations of the set{aj }. In these experiments we
focus on theN dependence of the average optimal energyĒm = 〈Em〉, and of the ratio
rm =

√
σ 2
m/Ēm whereσ 2

m = 〈E2
m〉 − 〈Em〉2 is the variance of the random variableEm. In

figure 1(a) we showĒ0 as a function ofN . The straight line shown in this figure yields the
fitting Ē0 = 0.802−NN . Hence, although the annealed boundĒa0 gives the correct scaling
with N , it is about five times smaller than our numerical estimate forĒ0. In figure 1(b)
we show the ratior0 as a function ofN . Interestingly, this ratio tends to 1 for largeN
indicating then that the optimal energyE0 is not self-averaging.

In the regime where〈Zm(T ∗m)〉 is of order eN we find ln〈Zm(T ∗m)〉 ≈ Ngm andT ∗m ≈ 1/2ζ
so that

Ēam = −N
gm

2ζ
. (24)

Of course, this solution is valid only form > 0.560 wheregm is negative. We note that
(24) gives a very poor lower bond tōEm. In particular, form = 1 we haveĒ1 = N/2
while the annealed bound yields̄Ea1 = 0. Fortunately, in the regime of extensiveEm we
can use the self-averaging property of the free energy density to calculateĒm exactly for
largeN (see the appendix). The final result is simply

Ēm = N

2

[
(1+m)2

2
− 1

]
(25)

which is valid form >
√

2− 1≈ 0.414. Thus the annealed lower bound is also very poor
in the region 0.414< m < 0.560 since in this region̄Eam decreases exponentially withN ,
while Ēm actually increases linearly withN .

To better appreciate the qualitative differences between the regimes of distinct scalings
with N , in figure 2 we present the numerical estimates forĒm as a function ofm for
N = 24. The existence of two different regimes of scaling withN , as well as the very good
agreement with the theoretical predictions form > 0.414, are apparent in this figure. A
noteworthy feature of our numerical estimate forĒm shown in the inset is that, in contrast
to the annealed lower bound (21), the even partitions (m = 0) do not give the lowest
energy. We have verified that this result also holds for smaller values ofN . Furthermore,
there seems to occur a rather abrupt transition atm ≈ 0.25 as indicated by the large error
bar and for the change of almost three orders of magnitude inĒm. Although it would be
very interesting to study these results more carefully for largerN , we are not aware of any
efficient heuristic to solve the NPP for constrained partitions. In particular, we note that the
differencing method [19] applies only to unconstrained partitions.

We turn now to the analysis of unconstrained partitions. The average partition function
in this case is given by

〈Zu(T )〉 =
∑
m

〈Zm(T )〉

= 2N
∫ ∞
−∞

dy

π

2T

1+ (2Ty)2 eNGu(y) (26)

where

Gu(y) = ln

[
sin(2y)

2y

]
. (27)
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Figure 2. Average optimal energy obtained through exhaustive search as a function ofm for
N = 24. The full curve in the principal graph is the theoretical estimate (25) while the one in
the inset is the annealed lower bound (21).

As before, in the limit of largeN the integral overy can be carried out via a saddle-point
integration. Since the saddle point isys = 0, the final result is simply

〈Zu(T )〉 = 2NT

√
6

πN
(28)

which yields

Ēau = 2−N
√
πN

6e2
≈ 0.2662−N

√
N. (29)

It is interesting to compare this result with the average energy of a randomly chosen
configurations. This quantity, which is defined by

Ēr = 2−N
∏
i

∫ 1

0
dai

∑
si=±1

∣∣∣∣∑
i

aisi

∣∣∣∣ (30)

is easily calculated and yields̄Er =
√

2N/3π for large N . Moreover, comparing
equations (23) and (29) we find that the lower bound for the average optimal energy of even
partitions (m = 0), which minimizesEam, is larger than that of unconstrained partitions by a
factorN1/2. The fact that these quantities do not coincide indicates that, for unconstrained
partitions,m is not a self-averaging quantity, even in the largeN limit, i.e. the values ofm
associated to the best unconstrained partitions depend on the specific realization of the set
of random variables{aj }. In figure 3(a) we present the numerical estimate for the average
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Figure 3. (a) Average optimal energy obtained through exhaustive search as a function ofN1/2

for unconstrained partitions. (b) Same as figure 1(b) but for unconstrained partitions.
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optimal energyĒu = 〈Eu〉 obtained through the exhaustive search forN 6 24. The data are
very well fitted byĒu = 1.122−N

√
N . In figure 3(b) we show the ratioru =

√
σ 2
u /Ēu as

a function ofN . As before, the finding that this ratio tends to 1 for increasingN indicates
thatEu is not self-averaging.

3. Average number of local minima

As mentioned before, a minimum in the 1-swap neighbourhood is a state that has lower
energy than all theN states that differ from it by a single spin only [17]. In the statistical
mechanics context, these states are usually termed metastable states [25]. The following
analysis will be restricted to unconstrained partitions only, since for constrained partitions we
would have to consider the simultaneous flip of two spins in order to satisfy the cardinality
constraint. The average number local minima with energyE = |t | is defined by

〈M(t)〉 =
〈∑
{s}
δ

(
t −

∑
j

sj aj

)∏
i

2(|t − 2siai | − |t |)
〉

(31)

whereδ(x) is the Dirac delta function and2(x) = 1 if x > 0 and 0 otherwise. As the
calculation is straightforward we will only sketch it in the following. Using the integral
representation of the delta function we obtain

〈M(t)〉 =
∫ ∞
−∞

dt̃

2π
eit t̃
∏
j

∑
sj=±1

∫ 1

0
daj e−i t̃ sj aj2(|t − 2sj aj | − |t |). (32)

Hence the integral overaj and the summation oversj can readily be performed, yielding

〈M(t)〉 =
∫ ∞
−∞

dt̃

2π
eit t̃

(
e−it t̃ − ei t̃ + ei t̃ − 1

i t̃

)N
if E = |t | < 1 (33)

and

〈M(t)〉 =
∫ ∞
−∞

dt̃

2π
eit t̃

(
ei t̃ − 1

i t̃

)N
= 0 if E = |t | > 1 (34)

where we have used the interesting result that the integral in equation (34) vanishes for all
N [26]. Thus, there are no local minima withE > 1. As usual, for largeN the integral in
equation (33) can be evaluated via a saddle-point integration. The final result is

〈M(t)〉 =
√

1

2πN |H ′′(ξ)| eNH(ξ) (35)

where

H(ξ) = ln 2+ ln

[
sinhξ

ξ
− e−tξ/2

sinh(tξ/2)

ξ

]
(36)

andH ′′(ξ) = −d2H(ξ)/dξ2. Here,ξ is the solution of

2

ξ
− 2 coshξ − e−tξ t

sinhξ − e−tξ/2 sinh(tξ/2)
= 0. (37)

The functionH(ξ) is a monotonically decreasing function ofE = |t |. In particular, it
decreases from ln 2 atE = 0 (ξ = 0) to −∞ at E = 1 (ξ = −∞). It vanishes at
E ≈ 0.851, so the average number of local minima with energy larger than that value
decreases exponentially withN .
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A more interesting quantity is the average number of local minima regardless of their
energy values, which is defined by

〈M〉 =
∫ ∞
−∞

dt 〈M(t)〉. (38)

From the above discussion, it is clear that only the close neighbourhood oft = 0 contributes
to this integral, so we can expand the integrand of (33) in powers oft and t̃ and keep the
lowest-order terms only. The final result is

〈M〉 =
√

24

π

2N

N3/2
≈ 2.764

2N

N3/2
. (39)

It is interesting to estimate the dependence onN of the typical energy of a local minimum.
This quantity, denoted byEt , is defined by

Et =
〈∫

dt tM(t)∫
dtM(t)

〉
(40)

which, in the annealed approximation framework [25], is approximated by

Et ≈
∫

dt t〈M(t)〉
〈M〉 . (41)

The procedure to evaluate (41) is identical to that used in the evaluation of (38) and yields

Et ≈ 2

N
. (42)

We note that while equation (39) gives the exact leading-order term of the average number of
local minima, equation (42) is an uncontrolled estimate for the energy of a typical minimum.
These quantities can be easily estimated numerically: for each value ofN , ranging from
100 to 3000, we generate 105 random statess and count the fraction of them that are local
minima and measure their energies. We find that the numerical data are very well fitted by
the equations〈M〉 ≈ (2.81± 0.02)2N/N3/2 andEt ≈ (1.76± 0.04)/N , which are in quite
good agreement with the theoretical predictions.

4. Conclusion

To appreciate some of the drastic features of the energy landscape associated to the NPP or,
equivalently, to the random antiferromagnetic Ising model defined by the Hamiltonian (4),
we compare our results with those of the SK model, which is defined by the Hamiltonian
[27]

H = −
∑
i

∑
j>i

Jij sisj (43)

where the couplingsJij are Gaussian statistically independent random variables of zero
mean and variance 1/N . In this model the annealed lower bound for the ground-state
energy isEa = −0.833N [21] and the number of metastable states increases as e0.199N

[28]. Hence, in the NPP there are much more local minima and the global minima are
much deeper than in the SK model. These findings may explain the failure of local search
techniques to produce good solutions to the NPP.

Some comments regarding the comparison of our approach with that of Karmakaret al
[18] are in order. Those authors have derived bounds on the probability of occurrence of
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the eventN (E) = 0, whereN (E) stands for the number of statess with energy smaller
thanE. Interestingly, these bounds are related to the first two moments ofN :

1− 〈N 〉 6 Pr{N = 0} 6 〈N
2〉 − 〈N 〉2
〈N 2〉 . (44)

The first inequality follows trivially from the fact thatN > 0, while the second is an
improvement of Chebyshev’s inequality. Only unconstrained and even partitions (m = 0)
were considered. However, as acknowledged by Karmakaret al [18], these bounds give no
information on the average value of the difference for the best partition, except perhaps for
its scaling withN . Also, we should mention that Fu [13] has actually carried out a replica
analysis of the NPP for the case of even partitionsm = 0. The aim of that analysis was to
investigate the existence of a spin glass phase transition in that problem. However, since
it was assumed that the free energy is extensive, the analysis missed the low-temperature
phase completely and so it failed to find a phase transition. More recently, Gent and Walsh
[29] presented numerical evidences for the existence of a phase transition in the NPP.
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Appendix

In this appendix we calculate exactly the average optimal energy in the regime whereEm
scales linearly withN . Similarly to equation (10) we write the partition function defined in
(6) as

Zm(T ) =
∫ ∞
−∞

∫ ∞
−∞

dx dx̃

2π
eixx̃−β|x|

∫ π

−π

dm̃

2π
eiNmm̃

∏
j

∑
sj=±1

exp[−isj (aj x̃ + m̃)] (45)

where β = 1/T is the inverse temperature. As in the annealed approximation, the
summation oversj can easily be performed, yielding

Zm(T ) = Nβ2
∫ ∞
−∞

dx
∫ i∞

−i∞

dx̃

2π i

∫ iπ/β

−iπ/β

dm̃

2π i
exp[−Nβ(xx̃ + |x| +mm̃)]

× exp

[
N

∫ 1

0
da ln 2 coshβ(x̃a + m̃)

]
(46)

where we have used the self-averaging property

1

N

∑
j

ln 2 coshβ(x̃aj + m̃) =
∫ 1

0
da ln 2 coshβ(x̃a + m̃) (47)

which is exact forN → ∞. In this limit we can carry out the integrals using the saddle-
point method, and so we obtain the following equation for the average free-energy density
f̄m = F̄m/N :

f̄m = xx̃ + |x| +mm̃− 1

β

∫ 1

0
da ln 2 coshβ(x̃a + m̃). (48)
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In the zero-temperature limit (β → ∞), the saddle-point equations yield̃x = −1,
m̃ = (1+m)/2 and

x = (1+m)2
4

− 1

2
(49)

where we have assumedx > 0 andm > 0. The average optimal energy is obtained by
taking the zero-temperature limit in equation (48) which yieldsf̄m→ Ēm/N = |x|.
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