IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Probabilistic analysis of the number partitioning problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 3417
(http://iopscience.iop.org/0305-4470/31/15/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 02/06/2010 at 06:33

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 3417-3428. Printed in the UK PIl: S0305-4470(98)89379-7

Probabilistic analysis of the number partitioning problem

F F Ferreira ad J F Fontanari

Instituto de Fsica de @0 Carlos, Universidade déi& Paulo, Caixa Postal 369, 13560-97bS
Carlos SP, Brazil

Received 19 November 1997

Abstract. Given a sequence ofV positive real numbergas,ay, ..., ay}, the number
partitioning problem consists of partitioning them into two sets such that the absolute value
of the difference of the sums af; over the two sets is minimized. In the case in which the
a;’s are statistically independent random variables uniformly distributed in the unit interval, this
NP-complete problem is equivalent to the problem of finding the ground state of an infinite-
range, random antiferromagnetic Ising model. We employ the annealed approximation to derive
analytical lower bounds to the average value of the difference for the best constrained and
unconstrained partitions in the largelimit. Furthermore, we calculate analytically the fraction

of metastable states, i.e. states that are stable against all single spin flips, and found that it
vanishes likeN —3/2,

1. Introduction

The importance of the study of complex optimization problems which involve quenched,
random, frustrated functions of many variables, as well as the major role that statistical
mechanics can play in the study, were pointed out by many authors more than 10 years ago
[1, 2]. In fact, the well-established statistical mechanics techniques to characterize ground
states (global minima) and metastable states (local minima) of spin glass models can be
readily adapted to the study of optimization problems [2]. As a result, these techniques
have been successfully applied to the probabilistic analysis of several classical combinatorial
optimization problems, such as the graph partitioning problem [3], the travelling salesman
problem [4, 5], the knapsack problem [6-8], and the satisfiability problem [9-11], to mention
only a few.

In this paper we study the number partition problem (NPP) which is stated as follows.
Given a sequence of positive real numbgrs ay, . . ., ay}, the NPP consists of partitioning
them into two disjoint setsA; and A, such that the difference

I @)
a/eAl ajEAz
is minimized. Alternatively, we can search for the Ising spin configuratioas(sy, . .., sy)
that minimize the energy or cost function
N
E(s)=|Y a5, 2)
j=1
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wheres; = 1 if a; € A; ands; = -1 if a; € A>. We can also consider the problem of
constrained partitions, in which the difference between the cardinalities ofdseasid A,
is fixed, i.e.

l N
j=1
The NPP may be viewed as the practical problem of finding the fairest way to partition a
set of N objectsj =1, 2, ..., N, each of which of value;, between two people. Despite

its simplicity, the NPP was shown to belong to the NP-complete class, which basically
means that there is no known deterministic algorithm guaranteed to solve all instances of
this problem within a polynomial time bound [12]. The fact that the NPP is frustrated
can easily be understood by squaring equation (2), so that the problem of minintizing
becomes the one of finding the ground state of the infinite-range, random antiferromagnetic
Ising Hamiltonian [13]

H=3) ) aass. 4)
oJ>i
Thus, we note that the problem of finding the ground state of (4) is NP-complete.

Although zero-cost solutions of the NPP may be of some value to cryptography [14],
the interest in this problem stems mainly from the remarkable failure of the stochastic
heuristic simulated annealing [15, 16] to find good solutions to it, as compared with the
solutions found by deterministic heuristics [17]. In fact, the reason for that failure is that
the usual strategy of exploring the space of configurat{ehshrough single spin flips leads
to changes of energy that are typically of ordgéwvl while a theoretical analysis indicates
that the global minimum energy is of ordefN2~—" for unconstrained partitions [18]. It
is interesting to note that a very simple deterministic heuristic, the differencing method of
Karmakar and Karp [19], can find with high probability solutions whose energies are of
order Y N*'°9" for somea > 0. More recently, it has been shown that the performance
of simulated annealing can be greatly improved and even surpass that of the differencing
method by employing different representations for the problem [20].

In this work we employ the annealed approximation [21, 22] to derive rigorous lower
bounds to the average value of the difference or energy for the best constrained and
unconstrained partitions. For constrained partitions, we show that the average optimal
energy is extensive fom > /2 — 1 and we calculate it exactly in this regime using the
self-averaging property of the free energy density. The theoretical predictions are compared
with numerical estimates for the optimal energy obtained through the exhaustive search of
the configuration space fa¥ < 24. Furthermore, we calculate analytically the average
number of minima in the 1-swap neighbourhood and estimate their typical energy. A
minimum in the 1-swap neighbourhood is a state that has lower energy than Allstates
that differ from it by a single spin only [17]. Similarly to previous studies of the NPP
[17, 18, 20], we will consider the case where thés are statistically independent random
variables uniformly distributed in the unit interval.

The remainder of this paper is organized as follows. In section 2 we describe the
annealed approximation and calculate the lower bounds to the average value of the optimal
energy. In section 3 we present the calculation of the average number of local minima
in the 1-swap neighbourhood. In section 4 we discuss our main results and present some
concluding remarks. In particular, we compare our approach with other theoretical studies
of the NPP [13, 18]. In the appendix we present the details of the self-averaging calculation
of the average optimal energy in the regime where this quantity is extensive.
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2. Annealed approximation

In the canonical ensemble formalism of the statistical mechanics the average value of the
optimal energy for constrained partitions is given by

E, = lim F,(T) = — lim T{InZ, 5
T—0 ( ) T—0 < ) ()

where F,,(T) is the average free energy, a#g (7) is the partition function

o= (v 5 o] 5] .

{s} J

with m = -1, -1+ 2/N,...,1—2/N,1. Here the summation is over th¢' Ztatess,
8(k, 1) is the Kronecker delta andl is the temperature. The notati@n..) stands for the
average over the random variables The limit T — 0 in equation (5) ensures that only
the states that minimiz& (s) will contribute to Z,,,.

Since the average entrosy, (T) = —dF,,/dT of a system of Ising spins is positive at
all temperaturesF,, must be a decreasing function #f so thatE,, = F(0) > F(T) for
all T. Defining the annealed free energy by

Fo(T) = =T In(Z,,(T)) )
and using Jensen’s inequality [23](1,) > (In Z,,), yield the following inequalities
Fo(T) < Fu(T) < Ep. )

Thus, the annealed free energy calculated at&myovides a rigorous lower bound 6,
[21, 22]. Clearly, the tightest bound is given BY, = F2(T) whereT is the temperature
that maximizesFé(T), i.e.

dFe
dr

=0. ()]

T*

m

This procedure is very useful because, in general, the annealed free energy is much easier
to evaluate than the quenched one.

We now proceed with the explicit evaluation of the annealed free energy. Using the
integral representations of the Dirac and Kronecker delta functions we write

00 © dy d¥ . - T din ~ 1 ) _ ~
(Zn(T)) :/ / Yelxxflx\/T/ %eleml_[/O da; Y exp[-is;(a;% + i)].
—o0 J —00 — j

sj=%1

(10)

The integrals over anda;, as well as the summation ovey, can easily be performed
yielding

0o AE in(x N o
(Zm(T))zf de 2T [sm(x/Z)} / d_meiNmrh[eiMH)E/Z+e7in"17ii/2]N. (11)

W2t 1+ (TH2 | %/2 L 2n

Using the binomial theorem, the integral overcan be readily carried out. The final result

is simply
_ (N  dy 2T Gn ()
(Zn(D)) = (n) ,/_oo T 1+ (2Ty)2eN ' (12)
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where
_yizm (13)
=T
G (y) = imy +In (—S'”y> (14)
y

and we have made the change of variable x/2. In the limit of largeN, the integral over
y can be evaluated using the saddle-point method [24]. SinteC 1, the saddle-point is
the imaginaryy, = iz, where¢ is the real solution of the equation

m — cothg + ; =0. (15)

Hence, the functiorG,, (y,) = G,,, where
sinh¢
¢

is real. Finally, using Stirling’s formula for the binomial coefficient we rewrite equation (12)
in the limit of largeN as

G =—m¢ +1In (16)

2 1 2T

Zn(T)) = — eNen 17
)= N A= mdiG 1= 2T a7
where
1+m 1+m 1-m 1—m

m:Gm_ l - | 18

8 2 "3 2 "3 (18)
and

2m
Gg1=—1+m2+?. (19)

At this stage we can readily calculate the temperafijréhat maximizes the annealed free

energy. In fact, equation (9) is written as
1+ (2T}¢)?

In(Z,,(T5)) + (—;)2 =
1-@T50)

We consider first the regime whet&,, (7)) is of order 1. In this case, equation (17)
implies that7,; is vanishingly small, so that equation (20) reducesZo,(T,;)) = el

Inserting this result into equation (7) yields, = 7,. Hence,

_ N
B = %,/(1 — m2)|G! |e"tNan (21)

which is consistent with the assumption tiTgt is small for largeN, provided thatg,, > 0.

Since g,, decreases monotonically with, from go = In2 to g; = —o0, this assumption

breaks down fofm| > 0.560 whereg,, is negative. Henceforth we will assume that> 0.
It is instructive to consider in detail the case of even partitions= 0). In this case

(20)

we find¢ =0, go = In2, andG§ = —3 so that
44/3
(Zo(ry) = 273 (22)
N
and
Fa _n TN N
Ee=2 V" ~o01672VN. (23)

4eV/3



Number partitioning problem 3421

22

20 -

18 -

16 -

2 N<E >

14 -

12 +

10 12 14 16 18 20 22 24

(b) 2.0

1.6

14 F

12 | E
1,0.- ................................ L * . . = =

08

06 -

04

02

0.0 | s i i | 2 ! s | i 1 . | A i
10 12 14 16 18 20 22 24

N

Figure 1. (a) Average optimal energy obtained through exhaustive search as a functign of
for even partitions/ = 0). (b) Ratio between the standard deviation and the average value of
the optimal energy obtained through exhaustive search as a functiéhfof even partitions

(m = 0).
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In figures 14) and p) we present the results of numerical experiments to estimate the energy
of the global minima for even partitions through the exhaustive search in the configuration
space forN < 24. In all experiments discussed in this work, the symbols represent the
averages over TOrealizations of the sefw;}. The error bars are calculated by measuring
the standard deviation of the average optimal energies obtained in 25 experiments, each
one involving the average of 400 realizations of the gg}. In these experiments we
focus on theN dependence of the average optimal eneljy = (E,,), and of the ratio
'm = \/02/E,, wheres? = (E2) — (E,)? is the variance of the random variabfg,. In
figure 1@) we showE, as a function ofV. The straight line shown in this figure yields the
fitting Eo = 0.802"VN. Hence, although the annealed bouiﬁgj gives the correct scaling
with N, it is about five times smaller than our numerical estimateHAgr In figure 10)
we show the ratiog as a function ofN. Interestingly, this ratio tends to 1 for large
indicating then that the optimal enerdj is not self-averaging.

In the regime wher¢Z,, (7.})) is of order & we find INZ,,(T})) ~ Ng, andT; ~ 1/2¢
so that

Sa 8m

E¢ = N2§. (24)

Of course, this solution is valid only for > 0.560 whereg,, is negative. We note that

(24) gives a very poor lower bond t5,,. In particular, form = 1 we haveE; = N/2

while the annealed bound yield_q = 0. Fortunately, in the regime of extensi¥g, we

can use the self-averaging property of the free energy density to caldijjagxactly for
large N (see the appendix). The final result is simply

_ N [ A+ m)?

Bu=y |55 1] (25)
which is valid form > +/2 — 1 ~ 0.414. Thus the annealed lower bound is also very poor
in the region 0414 < m < 0.560 since in this regioE? decreases exponentially witH,
while E,, actually increases linearly with.

To better appreciate the qualitative differences between the regimes of distinct scalings
with N, in figure 2 we present the numerical estimates fyr as a function ofm for
N = 24. The existence of two different regimes of scaling withas well as the very good
agreement with the theoretical predictions fer> 0.414, are apparent in this figure. A
noteworthy feature of our numerical estimate o, shown in the inset is that, in contrast
to the annealed lower bound (21), the even partitions= 0) do not give the lowest
energy. We have verified that this result also holds for smaller valuéé. dfurthermore,
there seems to occur a rather abrupt transitiom at 0.25 as indicated by the large error
bar and for the change of almost three orders of magnitudg,in Although it would be
very interesting to study these results more carefully for largewe are not aware of any
efficient heuristic to solve the NPP for constrained partitions. In particular, we note that the
differencing method [19] applies only to unconstrained partitions.

We turn now to the analysis of unconstrained partitions. The average partition function
in this case is given by

(Z(T)) =D (Zu(T))

 dy 2T
=2V R — A 26
where

(27)

Gu(y) = In |:Sin(2y):| .

2y
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Figure 2. Average optimal energy obtained through exhaustive search as a functierfaf
N = 24. The full curve in the principal graph is the theoretical estimate (25) while the one in
the inset is the annealed lower bound (21).

As before, in the limit of largeV the integral overy can be carried out via a saddle-point
integration. Since the saddle pointyis= 0, the final result is simply

6
(Zu(T)) = 2T —~ (28)
which yields
Ee=27N ] % ~ 0.2662°VV/N. (29)

It is interesting to compare this result with the average energy of a randomly chosen
configurations. This quantity, which is defined by

Er = 2_N1_[/1dai Z Za,‘S,‘
i 70 si=%1

is easily calculated and yield&, = +/2N/3z for large N. Moreover, comparing
equations (23) and (29) we find that the lower bound for the average optimal energy of even
partitions ¢z = 0), which minimizesE¢, is larger than that of unconstrained partitions by a
factor N¥/2. The fact that these quantities do not coincide indicates that, for unconstrained
partitions,m is not a self-averaging quantity, even in the lafgdimit, i.e. the values ofn
associated to the best unconstrained partitions depend on the specific realization of the set
of random variablega;}. In figure 3@) we present the numerical estimate for the average

(30)
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optimal energyE, = (E,) obtained through the exhaustive searchNox 24. The data are
very well fitted by E, = 1.122°V{/N. In figure 3p) we show the ratio,, = \/o2/E, as

a function of N. As before, the finding that this ratio tends to 1 for increasihgndicates

that E, is not self-averaging.

3. Average number of local minima

As mentioned before, a minimum in the 1-swap neighbourhood is a state that has lower
energy than all thev states that differ from it by a single spin only [17]. In the statistical
mechanics context, these states are usually termed metastable states [25]. The following
analysis will be restricted to unconstrained partitions only, since for constrained partitions we
would have to consider the simultaneous flip of two spins in order to satisfy the cardinality
constraint. The average number local minima with endfgy |¢| is defined by

(M(1)) = <ZS(1‘ - Zsjaj) [Teur - 2siail - |t|)> (31)
{s} J i
where §(x) is the Dirac delta function ané(x) = 1 if x > 0 and 0 otherwise. As the

calculation is straightforward we will only sketch it in the following. Using the integral
representation of the delta function we obtain

© df - 1 =
(M) = / Zé” 1> / da; €9 Q (|t — 25ja;] — [1]). (32)
% J s=%170
Hence the integral over; and the summation ovey can readily be performed, yielding

o g feii _di g _1\"
(M()) =/ ie‘” (e éfé 1) if E=t|]<1 (33)
oo 2 it

and

~ i N
(M(m:f dr éff(e' _ 1) =0 if E=>1 (34)

0o 2T it

where we have used the interesting result that the integral in equation (34) vanishes for all
N [26]. Thus, there are no local minima wiihi > 1. As usual, for largeV the integral in
equation (33) can be evaluated via a saddle-point integration. The final result is

_ 1 HE)
M) = [ g € (35)

where

HE) =In2+In [S'z_ﬁ _ e—zw%} )
and H'(§) = ~d?H (£)/d;2. Here, is the solution of

2 2cosht — e 't -

& sinh& — e '6/2sinh(t£/2) -
The function H (&) is a monotonically decreasing function &f = |¢|. In particular, it
decreases fromIn2 af = 0 (§ = 0)to —oc at E = 1 (¢ = —o00). It vanishes at
E ~ 0.851, so the average number of local minima with energy larger than that value
decreases exponentially witki.
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A more interesting quantity is the average number of local minima regardless of their
energy values, which is defined by

(M) :/ drt (M(1)). (38)

From the above discussion, it is clear that only the close neighbourhaog 6fcontributes
to this integral, so we can expand the integrand of (33) in powersanid7 and keep the
lowest-order terms only. The final result is

24 2N 2N

It is interesting to estimate the dependencenonf the typical energy of a local minimum.
This quantity, denoted by, is defined by

[ de e M (1)

E =({——" 40
’ < Jdt M) > “o
which, in the annealed approximation framework [25], is approximated by
[ dr t(M@))
N— 41
‘ ) (41)
The procedure to evaluate (41) is identical to that used in the evaluation of (38) and yields
2
E ~ (42)

We note that while equation (39) gives the exact leading-order term of the average number of
local minima, equation (42) is an uncontrolled estimate for the energy of a typical minimum.
These quantities can be easily estimated numerically: for each valde odnging from

100 to 3000, we generate 3andom states and count the fraction of them that are local
minima and measure their energies. We find that the numerical data are very well fitted by
the equationg M) ~ (2.8140.02)2¥ /N%? andE, ~ (1.76+0.04)/N, which are in quite

good agreement with the theoretical predictions.

4. Conclusion

To appreciate some of the drastic features of the energy landscape associated to the NPP or,
equivalently, to the random antiferromagnetic Ising model defined by the Hamiltonian (4),
we compare our results with those of the SK model, which is defined by the Hamiltonian

[27]
H==) "> Jiss (43)
>

where the couplings/;; are Gaussian statistically independent random variables of zero
mean and variance/N. In this model the annealed lower bound for the ground-state
energy isE¢ = —0.833N [21] and the number of metastable states increases#&"e
[28]. Hence, in the NPP there are much more local minima and the global minima are
much deeper than in the SK model. These findings may explain the failure of local search
techniques to produce good solutions to the NPP.

Some comments regarding the comparison of our approach with that of Karetadiiar
[18] are in order. Those authors have derived bounds on the probability of occurrence of
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the event\V(E) = 0, where N (E) stands for the number of stateswith energy smaller
than E. Interestingly, these bounds are related to the first two momemsé: of

(NV?) = (N)?
(N?)

The first inequality follows trivially from the fact that > 0, while the second is an
improvement of Chebyshev’s inequality. Only unconstrained and even partitioas @)

were considered. However, as acknowledged by Karmeikal [18], these bounds give no
information on the average value of the difference for the best partition, except perhaps for
its scaling withN. Also, we should mention that Fu [13] has actually carried out a replica
analysis of the NPP for the case of even partitions- 0. The aim of that analysis was to
investigate the existence of a spin glass phase transition in that problem. However, since
it was assumed that the free energy is extensive, the analysis missed the low-temperature
phase completely and so it failed to find a phase transition. More recently, Gent and Walsh
[29] presented numerical evidences for the existence of a phase transition in the NPP.

1-NM) < PriN =0} < (44)
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Appendix
In this appendix we calculate exactly the average optimal energy in the regime Where

scales linearly withv. Similarly to equation (10) we write the partition function defined in
(6) as

Z,(T) = /00 /00 d);—:ieixjfﬂlx‘/ eINmm l_[ Z expl—is;(a;jx + m)] (45)

Jjosi=%1

where 8 = 1/T is the inverse temperature. As in the annealed approximation, the
summation oves; can easily be performed, yielding

00 i7/B di
Z,(T) = Np? / dx / 2 expl-NB(xE + |x| + min)]
—0 —ioco 27T| —in/B 27i
X exp[ / da In2 coshB(xa + rﬁ)] (46)
0
where we have used the self-averaging property
1 1
NZIanoshS()Eaj + 1) :[O da In2 coshB(Fa + i) (47)
J

which is exact forN — oo. In this limit we can carry out the integrals using the saddle-
point method, and so we obtain the following equation for the average free-energy density
Jm = Fn/N:

_ 1 1
fm = xX + |x| +mm — E/ da In2coshB(xa + m). (48)
0
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In the zero-temperature limit3( — oo0), the saddle-point equations yield = —1,
m=(14+m)/2 and
A+m? 1
== - _Z 49
* 4 2 (49)

where we have assumed> 0 andm > 0. The average optimal energy is obtained by
taking the zero-temperature limit in equation (48) which yiefils— E,,/N = |x|.
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